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In Section I of this Internet Appendix, we present bootstrap versions of the employed rank and

joint beta tests, and we investigate their empirical rejection rates via Monte Carlo simulations. In

the same section, we describe the nonparametric bootstrap used in the paper. Section II contains

some additional evidence for equity portfolio returns. Finally, we report results for nonequity asset

classes in Section III. We use the same notation and figure format as in the paper.

I. Bootstrap Inference

We start by describing the bootstrap implementation of the rank and joint beta tests. Next,

we explore the empirical rejection rates of the asymptotic and bootstrap versions of the rank and

joint beta tests. Finally, we illustrate the nonparametric bootstrap method.

A. Bootstrap Rank and Joint Beta Tests

Recall that the identification condition for the second-pass risk premia is that the N ×2 matrix

X = [1N , βH ] (for the case of one risk factor) is of full column rank. Let IN−1 be an (N−1)×(N−1)

identity matrix and P denote an N × (N − 1) orthonormal matrix (P′P = IN−1) whose columns

are orthogonal to 1N such that

PP′ = IN − 1N (1′N1N )−11′N . (1)

Using this notation, the null of reduced column rank, H0 : rank(X) = 1, can be expressed as H0 :

P′βH = 0N−1, where 0N−1 is an (N−1)-vector of zeros. A simple Wald test of H0 : P′βH = 0N−1

can be performed using the following test statistic:

WT = (T −H)β̂
′
HPV̂−1

P′β̂H

P′β̂H , (2)
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where V̂P′β̂H
is a consistent estimator of the long-run covariance matrix

VP′β̂H
=
∑∞

j=−∞
E
[
mt,Hm′t+j,H

]
, (3)

with mt,H =
(ft+H,t−µfH )

σ2
fH

P′εt+H,t, µfH = E [ft+H,t] , and σ2fH = Var [ft+H,t] . In the numerical im-

plementation of the test, we use the Newey and West (1987) heteroskedasticity and autocorrelation

consistent (HAC) estimator with a bandwidth set equal to H.

While under some regularity conditions the test WT is asymptotically chi-squared distributed

with N − 1 degrees of freedom, this approximation will likely provide a very poor approximation of

the finite-sample distribution for the reasons discussed in the paper: small T and large N and H

(both relative to T ) that further reduce the effective number of time series observations.1 Before

describing the bootstrap procedure for approximating the finite-sample distribution of the test

WT , it is convenient to pre-multiply the first-pass regression model by P′ and obtain the sample

quantities that enter the test WT , which yields

P′Re
t+H,t = P′α + P′βHft+H,t + P′εt+H,t. (4)

This model also facilitates imposing the null hypothesis of reduced rank H0 : P′βH = 0N−1 in the

bootstrap sample. Under the null, we have

P′Re
t+H,t = µP′Re + P′εt+H,t, (5)

where µP′Re = E
[
P′Re

t+H,t

]
. Let P′ε̂t+H,t denote the OLS estimate of P′εt+H,t and µ̂P′Re

be the sample estimate of µP′Re . Stack the H-period factor ft+H,t and the (N − 1)-vector

R̃e
t+H,t = µ̂P′Re + P′ε̂t+H,t in a (T − H) × N matrix Z with rows zt = [ft+H,t, (R̃

e
t+H,t)

′] for

t = 1, . . . , T −H. The bootstrap samples are constructed by drawing with replacement blocks of l

(1 ≤ l < T −H) observations from matrix Z, denoted by Z∗ = {(z∗1, z∗2, . . . , z∗l ), (z∗l+1, z
∗
l+2, . . . , z

∗
2l),

. . . , (z∗T−l−H , z
∗
T−l+1−H , . . . , z

∗
T−H)} with z∗t = [f∗t+H,t, (R̃

e∗
t+H,t)

′] being the resampled analog of the

original data zt = [ft+H,t, (R̃
e
t+H,t)

′]. Using the bootstrap sample, we obtain the estimated quanti-

ties P′β̂
∗
H and P′ε̂∗t+H,t by running an OLS regression of R̃e∗

t+H,t on f∗t+H,t (and a constant). Then,

1The H-period overlapping data also induces strong serial correlation of a telescoping sum pattern. It is widely
documented that the Newey and West (1987) HAC estimator is not well-suited to capture this type of serial de-
pendence. We also experimented with the Hansen and Hodrick (1980) HAC estimator, but this estimator is not
guaranteed to be positive semi-definite. This is the case in LLM’s empirical application given the large N and the
relatively small T.
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the bootstrap analog of WT for the j-th bootstrap sample is constructed as

W∗T,j = (T −H)β̂
∗′
HPV̂∗−1

P′β̂
∗
H

P′β̂
∗
H , (6)

where V̂∗
P′β̂

∗
H

denotes the HAC estimator of VP′β̂H
, with the bootstrap sample analog of mt,H

being m̂∗t,H =
(f∗t+H,t−µ̂

∗
f∗
H
)

σ̂∗2
f∗
H

P′ε̂∗t+H,t, µ̂
∗
f∗H

= 1
T−H

∑T−H
t=1 f∗t+H,t, and σ̂∗2f∗H

= 1
T−H

∑T−H
t=1 (f∗t+H,t −

µ̂∗f∗H
)2. With B bootstrap replications, the bootstrap p-value of the rank test is computed as

1
B

∑B
j=1 I

{
W∗T,j >WT

}
, where I{·} is the indicator function.

The bootstrap test of the null H0 : βH = 0N is constructed similarly but without pre-

multiplying by the matrix P′. While the two tests yield almost identical results for models with a

single spurious factor, differences emerge in the presence of useful factors in single- or multi-factor

models. For example, since the identification condition is concerned with the matrix X = [1N , βH ],

the rank of X can be compromised if βH = c for some c 6= 0N . Furthermore, in multi-factor models,

βH is a matrix and rank failure can also occur if two or more of its columns are linear combinations

of each other (even if, individually, they are different than a zero vector, that is, the factors are

not spurious). The bootstrap rank test described above can accommodate these possibilities with

the added advantage, as we show in the next subsection, of good size control when the number of

effective time series observations is small.

B. Size Properties of the Joint Beta and Rank Tests

To evaluate the size properties of the asymptotic and bootstrap versions of the joint beta and

rank tests, we set up a Monte Carlo experiment where we generate a spurious factor, that is, a factor

that is independent of the test asset returns. In order to accomplish this and preserve the salient

features of the data, we start by approximating the capital share dynamics by the autoregressive

(AR) of order one, AR(1), process

KSt+1 = δ + ρKSt + εt+1, (7)

where ρ < 1 and εt+1 is a mean-zero error term with variance σ2. (Other approximations could

also be employed.) Let σ̂2 denote the sample estimate of σ2 from the actual data. Then, we

generate ε◦t+1 as N(0, σ̂2) independently from [R1,t+1, . . . , RN,t+1]
′, and we construct a simulated

capital share series KS◦t+1 = δ̂+ ρ̂KS◦t + ε◦t+1 for some initial value KS1, where δ̂ and ρ̂ denote the

OLS estimates (from the actual data) of δ and ρ, respectively. Subsequently, we use the simulated
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capital share process to construct the H-period factor f◦t+H,t = KS◦t+H/KS
◦
t . Similarly, we generate

one-period returns as multivariate normally distributed with mean and covariance matrix estimated

from the actual data. The H-horizon return compounding is then performed as usual by taking the

moving product over a sliding window of length H. For the bootstrap versions of the two tests, we

impose the null of rank deficiency on the compounded returns (as explained in Section I.A), and

we use the block bootstrap to compute the rank and joint beta test statistics.2

In the Monte Carlo experiment, we consider two sample sizes: T = 202, the (before transfor-

mations) sample size in LLM, and T = 1, 000, a sufficiently large sample size to determine whether

the empirical size of the various tests improves as T increases. The number of Monte Carlo runs

is set equal to 10,000. The chosen horizons are H = 1, 4, and 8, and the number of bootstrap

replications for the bootstrap versions of the joint beta and rank tests is set equal to B = 399.

Finally, the test portfolios are the 10 long-run reversal portfolios (N = 10) and the 25 size and

book-to-market sorted portfolios (N = 25), respectively.

Table IA.I reports our simulations results, where Panels A and B are for the asymptotic versions

of the tests while Panels C and D are for their bootstrap counterparts.

Table IA.I about here

The results in Panel B are striking. For N = 25, T = 202, and H = 4, 8, the asymptotic imple-

mentation of the joint beta and rank tests leads to empirical rejection rates close to 100% at a

5% nominal level of the tests. Even for T = 1, 000, these rejection rates exceed 50% and 78% for

H = 4 and H = 8, respectively. Certainly, a smaller N and a larger T help, but the overrejections

of the asymptotic versions of these tests are still substantial, as emphasized in Panel A for the 10

long-run reversal portfolios. Panels C and D display a dramatic size improvement when considering

the bootstrap implementation of the joint beta and rank tests. The size properties of the tests are

now very good for N = 10, regardless of the chosen overlapping horizon H. For N = 25, the tests

slightly underreject for T = 202, but their empirical size approaches the nominal level of the tests

as T increases.3 To our knowledge, we are the first to document these huge size distortions for

2We employ a block size M = H. Moreover, we use the Newey and West (1987) HAC estimator with a bandwidth
set equal to H in the computation of the asymptotic and bootstrap versions of the tests. It should be noted though
that in general the Newey and West (1987) HAC estimator is not very well-suited to capture the type of persistence
arising from overlapping data.

3We attribute the slight size distortions of the bootstrap to our choice of block size, M = H. A more judicious or
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the asymptotic joint beta and rank tests in an overlapping setting. In addition, this is the first

study to document the impressive size corrections that can be obtained by using the bootstrap

versions of the joint beta and rank tests. In summary, this simulation evidence suggests that the

bootstrap-based identification tests used in the paper should be fairly reliable for the sample sizes

and compounding horizons considered by LLM.

C. Nonparametric Bootstrap-Based Confidence Intervals

In this subsection, we describe a nonparametric bootstrap method that is agnostic to the un-

derlying data generating mechanism but flexible enough to account for the salient features of the

data. Besides being robust to possible model misspecification, it also does not rely on a parametric

structure that could be poorly identified due to the presence of spurious or nearly spurious factors.

The version of the method that we present here resamples the one-period factor and returns

and then constructs the H-period series. We assume that the capital share dynamics can be

approximated as in Eq. (7). As mentioned in the paper, the estimate of the risk premium on the

capital share factor, λ̂H , is unchanged if the estimation is performed with the gross returns R

instead of the excess returns Re. Stack the OLS residuals ε̂t+1 (obtained from Eq. (7)) and the

gross returns on the N assets in the matrix

Z =


ε̂2 R1,2 ... ... RN,2
... ... ...
ε̂t+1 R1,t+1 ... ... RN,t+1

... ... ...
ε̂T R1,T ... ... RN,T

 . (8)

We resample this matrix by block bootstrap, with block size M , to accommodate any serial correla-

tion in the AR residuals and one-period returns as well as possible conditional heteroskedasticity. It

is important to remark that this fully preserves the cross-sectional covariance structure of the data.

Let Z∗ denote the resampled Z matrix with a typical row [ε̂∗t+1, R
∗
1,t+1, . . . , R

∗
N,t+1], which, because

of the block bootstrap structure for M > 1, retains the dependence with its adjacent rows. The

bootstrap sample for the capital share series is then obtained as KS∗t+1 = δ̂+ ρ̂KS∗t + ε̂∗t+1 for some

initial value KS1,
4 and the H-period bootstrap factor is constructed as f∗t+H,t = KS∗t+H/KS

∗
t .

The bootstrap returns at H > 1 are constructed by compounding one-period bootstrap returns as

data-driven selection of M would likely eliminate these distortions.
4To start the recursion, we draw randomly an observation from the sample. We also experimented with the first

observation in the sample and found the difference in results to be negligible.
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R∗j,t+2,t = R∗j,t+1R
∗
j,t+2, . . . , R

∗
j,t+H,t =

∏H
h=1R

∗
j,t+h for j = 1, . . . , N. The bootstrap estimates of

βH , β∗H , are obtained from an OLS time-series regression of R∗t+H,t on f∗t+H,t and a constant, while

the risk premium bootstrap estimate, λ∗H , is computed from an OLS cross-sectional regression of

µ∗R, the vector of sample means for R∗t+1 = [R∗1,t+1, . . . , R
∗
N,t+1]

′, on [1N , β
∗
H ]. For a significance

level α, the 100(1−α)% bootstrap confidence intervals are given by [q∗ (α/2) , q∗ (1− α/2)], where

q∗(η) denotes the η-th quantile of the empirical distribution of λ∗H .

II. Additional Results for Equities

In what follows, we consider alternative factors to shed more light on the effects of the H-period

overlapping on pricing and statistical inference. We first consider the market factor (the excess

return on the value-weighted NYSE-AMEX-NASDAQ stock market index) that provides a natural

benchmark for one-period nonoverlapping returns. We then assess how the statistical properties

of its risk premium are affected by overlapping (compounding) the market return over H periods.

We also conduct a similar analysis for LLM’s consumption factor, measured as expenditures on

nondurables and services (excluding shoes and clothing). The frequency and sample period are the

same as the ones considered in the paper.

In what follows, the H-period market excess return is defined as Rem,t+H,t =
∏H
h=1Rm,t+h −∏H

h=1Rf,t+h, which is identical to the way the H-period excess returns on the test assets are

constructed. We start with the observation, for which we provide statistical evidence below, that

the beta estimates for the market factor are significantly different from zero. Figure IA.1 plots

the 95% bootstrap confidence intervals (based on LLM’s bootstrap procedure) for the market risk

premium.

Figure IA.1 about here

In sharp contrast with Figure 1 for the capital share factor in the paper, the confidence intervals

for the market risk premium are much wider and do not exhibit the pronounced tightening with H

that we observe for the KS factor.

Next, we modify slightly LLM’s bootstrap to address some issues in their resampling procedure.

First, in LLM’s block bootstrap implementation in the first-pass, there seems to be an error that
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results in bootstrap data that exhibits much less persistence than the actual data (for H > 1). This

is related not to the choice of block size but to the block resampling itself. Second, in constructing

bootstrap average returns for the second-pass, LLM resample the cross-sectional average pricing

errors. Since these average pricing errors are small, this induces very little variation in the bootstrap

average returns (which explains the [−0.00, 0.00] confidence intervals reported in LLM’s Internet

Appendix). Furthermore, this resampling is done independently of the resampling in the first-pass.

Since the underlying one-period returns in both stages are the same, this creates some logical

inconsistency in the two sets of bootstrap returns. We modify LLM’s bootstrap method to fix

these two issues. For the second-pass regression, we resample the panel ((T −H) ×N matrix) of

pricing errors along the time series dimension and then compute the cross-sectional averages to

construct bootstrap average pricing errors. Also, to ensure internal consistency, we implement the

block bootstrap on the (T −H)× (1 + 2N) stacked matrix of the AR(1) factor residuals, N time

series of first-pass regression residuals, and N time series of pricing errors. To be in line with LLM’s

recommendation, we use a block size M = 3 for all H, although, to preserve the serial correlation

patterns induced by overlapping, the block size should be a function of the overlapping horizon

and it should be at least as large as H (results for this choice of M are available upon request).

The block bootstrap samples are then constructed using the circular block bootstrap of Politis and

Romano (1994).5 The bootstrap series for the relevant variables are obtained using the parametric

structure of the AR(1) model for the factor as well as the two-pass model of returns.

Figure IA.2 presents the results of this modified bootstrap for the market risk premium.

Figure IA.2 about here

Relative to Figure IA.1, the confidence intervals in Figure IA.2 are wider and the market risk

premium estimate is statistically insignificant (at the 5% significance level) at all horizons H.

These findings are largely consistent with the insignificant results for the market risk premium that

are typically obtained based on one-period returns. Importantly, we do not observe the pronounced

pattern of shrinking confidence intervals that occurs for the capital share factor. Therefore, the

question is: what is the reason for these vastly different results?

To gain some further intuition, in Figure IA.3 we present the bootstrap p-values of the joint

5The circular block bootstrap of Politis and Romano (1994) is also used in the nonparametric method in Section I.C.
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beta and rank tests for the market factor.

Figure IA.3 about here

As expected, the joint beta test always strongly rejects the null H0 : βH = 0N at all horizons.

The rank test also rejects the null of reduced rank at short horizons but not at long overlapping

horizons. Thus, even for the market factor, LLM’s bootstrap (or any other statistical inference

procedure that maintains the identification assumption) would not be valid for intermediate or

large H, as it would tend to underestimate the true uncertainty. The different outcomes between

the joint beta and rank tests for large H also nicely illustrate the more general nature of the rank

test outlined in Section I above. Two other interesting issues emerge. First, since the sampling

variation tends to increase with H, the rank test cannot reliably differentiate β̂H from a vector of

ones. This is a manifestation of the reduction of the number of effective time series observations

induced by overlapping that we mention in the paper. Second, the rank test cannot reject the null of

a reduced rank for “All Equities.” In this case, the number of assets is very large (N = 85) relative

to the time series sample size and the number of effective time series observations per test asset

(moment condition) is small. Given the lack of sufficient sample information, it is not surprising

that based on the rank test we cannot reject the null of lack of identification. This stands in sharp

contrast with the asymptotic tests (not reported here) that provide a very poor approximation in

this setting.

As an additional robustness check of the properties of the bootstrap confidence intervals of

LLM’s method when the factor is potentially spurious, we consider the H-period growth of non-

durable consumption in LLM’s dataset. As for the capital share factor, based on the joint beta

and rank tests for the consumption factor in Figure IA.4, we cannot reject the null of identification

failure.

Figure IA.4 about here

In addition, Figure IA.5 plots LLM’s 95% bootstrap confidence intervals for the consumption risk

premium.

Figure IA.5 about here
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To highlight the similarities with the capital share factor, the vertical axis is the same as in Figure 1

in the paper. The tightness of the confidence intervals is again remarkable even though λ̂H is

statistically significant only for three of the five sets of test assets.

In summary, this additional evidence strongly suggests that the likely source of the extremely

tight confidence intervals for LLM’s capital share factor is the identification failure. (It is important

to remind the readers that the parametric bootstrap proposed by LLM maintains the assumption

that the model is fully identified, that is, X is of full column rank.) Overlapping data appears

to amplify and obscure (to some standard diagnostic checks) this identification failure as the per-

sistence induced by overlapping introduces a new dimension for spurious relationships. Given the

small number of effective time series observations (due to large N and H), traditional asymptotic

methods may lead to highly misleading inference. Overall, the interaction between identification

failure and high persistence of the variables in the first-pass appears to be the main driver of the

counterintuitive tightness of the confidence intervals.

III. Other Asset Classes

LLM claim that their capital share factor is also priced in the cross-section of expected returns

on nonequity portfolios such as corporate bonds (“Bonds”), sovereign bonds (“Sovereign Bonds”),

index options (“Options”), and credit default swaps (“CDS”). The data details and the corre-

sponding sample periods can be found in LLM’s Section I. For all these asset classes, the time

series sample size is substantially smaller than the one for equity portfolios. For the case of CDS,

for example, the number of time series observations, before overlapping, is T = 47, whereas the

number of test assets is N = 20. This clearly represents an extreme scenario where drawing reliable

inferences could be challenging for any econometric method. Figure IA.6 parallels Figure 1 in the

paper.

Figure IA.6 about here

Based on LLM’s bootstrap method, the capital share factor is always priced regardless of the

chosen horizon H. (The only exception is for sovereign bonds at H = 10.) Different from equity

portfolios, the evidence of pricing for the capital share factor is very strong at H = 1, the one-

period (nonoverlapping) scenario. The figure also displays an overall confidence interval tightening
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pattern for these additional asset classes, which is consistent with the one in Figure 1 in the paper.

However, Figure IA.7 shows that this strong evidence of pricing is the likely artifact of identification

failure.

Figure IA.7 about here

For these alternative asset classes, factor spuriousness seems to be as strong and pervasive as for

equities. Moreover, the p-values of the beta and rank tests are generally close to each other at the

various horizons H.

Similar to Figure 5 in the paper, Figure IA.8 plots the sample and the simulated R2 profiles for

H = 1, . . . , 16.

Figure IA.8 about here

The figure reveals that the sample pattern of high cross-sectional R2 values is consistent with a

spurious factor that is independent of the test asset returns. The “commonality” between the factor

and the returns can be traced back to the common persistent pattern from H-period overlapping,

amplified by the even smaller effective time series sample size relative to the equity portfolio case.

Finally, Figure IA.9 plots the 95% confidence intervals based on the nonparametric bootstrap

for the capital share risk premium at various horizons H.

Figure IA.9 about here

The evidence seems to always support absence of pricing, regardless of the asset class and chosen

compounding horizon. In summary, all this empirical and simulation evidence points to spuriousness

and lack of genuine pricing for the capital share factor proposed by LLM.
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Table IA.I
Size Properties of the Joint Beta and Rank Tests

The table presents Monte Carlo simulation results for the empirical size of the asymptotic and bootstrap
versions of the joint beta and rank tests. We consider two sample sizes (T = 202, the length of LLM’s original
sample, and T = 1, 000) and three compounding horizons (H = 1, 4, and 8). The number of simulated paths
for the returns and factor is 10,000. For each of the 10,000 Monte Carlo iterations, the p-values for the
bootstrap versions of the tests are computed based on 399 replications. The test portfolios are the 10 long-
run reversal portfolios (N = 10) and the 25 size and book-to-market sorted portfolios (N = 25), respectively.
The factor is calibrated to the dynamics of LLM’s KS series and is generated independently of the test asset
returns. (See Section I.B.)

Panel A: Asymptotic Tests (N = 10)

Joint Beta Test Rank Test

T 10% 5% 1% 10% 5% 1%

H = 1 202 0.234 0.149 0.056 0.218 0.135 0.048
1,000 0.122 0.067 0.013 0.119 0.062 0.013

H = 4 202 0.657 0.566 0.397 0.606 0.508 0.337
1,000 0.311 0.213 0.088 0.291 0.197 0.080

H = 8 202 0.888 0.846 0.748 0.842 0.787 0.668
1,000 0.438 0.330 0.164 0.408 0.297 0.143

Panel B: Asymptotic Tests (N = 25)

Joint Beta Test Rank Test

T 10% 5% 1% 10% 5% 1%

H = 1 202 0.630 0.528 0.340 0.604 0.496 0.309
1,000 0.190 0.116 0.034 0.187 0.109 0.032

H = 4 202 0.996 0.992 0.981 0.993 0.988 0.974
1,000 0.640 0.536 0.339 0.623 0.514 0.315

H = 8 202 1.000 1.000 1.000 1.000 1.000 1.000
1,000 0.869 0.804 0.655 0.850 0.782 0.619

Panel C: Bootstrap Tests (N = 10)

Joint Beta Test Rank Test

T 10% 5% 1% 10% 5% 1%

H = 1 202 0.089 0.042 0.007 0.091 0.043 0.007
1,000 0.099 0.048 0.008 0.095 0.049 0.008

H = 4 202 0.120 0.053 0.009 0.123 0.056 0.008
1,000 0.130 0.071 0.015 0.129 0.069 0.016

H = 8 202 0.084 0.030 0.003 0.085 0.035 0.003
1,000 0.127 0.064 0.011 0.126 0.066 0.011

Panel D: Bootstrap Tests (N = 25)

Joint Beta Test Rank Test

T 10% 5% 1% 10% 5% 1%

H = 1 202 0.055 0.022 0.002 0.059 0.023 0.002
1,000 0.100 0.049 0.008 0.099 0.047 0.008

H = 4 202 0.062 0.024 0.001 0.066 0.024 0.002
1,000 0.145 0.073 0.015 0.144 0.075 0.015

H = 8 202 0.027 0.006 0.000 0.026 0.006 0.000
1,000 0.099 0.043 0.005 0.100 0.044 0.005
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Figure IA.1. Expected return-beta regressions with the market factor (LLM’s boot-
strap). The plots display the market risk premium estimate, λ̂H , and its 95% bootstrap confidence
interval for H = 1, . . . , 16. H indicates the horizon in quarters over which returns and market ex-
posure are measured. The number of bootstrap replications is 10,000. The sample period is the
one considered by LLM for the equity portfolio case.
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Figure IA.2. Expected return-beta regressions with the market factor (modified LLM’s
bootstrap). The plots display the market risk premium estimate, λ̂H , and its 95% bootstrap
confidence interval for H = 1, . . . , 16. H indicates the horizon in quarters over which returns and
market exposure are measured. The number of bootstrap replications is 10,000. The sample period
is the one considered by LLM for the equity portfolio case.

14



0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Figure IA.3. Joint beta and rank tests with the market factor. The plots display the
p-values of the bootstrap joint beta (red circles) and rank (blue circles) tests of model identification
for H = 1, . . . , 16. H indicates the horizon in quarters over which returns and market exposure are
measured. The horizontal blue line represents the 5% nominal size of the tests. The number of
bootstrap replications is 10,000. The sample period is the one considered by LLM for the equity
portfolio case.
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Figure IA.4. Joint beta and rank tests with the consumption factor. The plots display the
p-values of the bootstrap joint beta (red circles) and rank (blue circles) tests of model identification
for H = 1, . . . , 16. H indicates the horizon in quarters over which returns and consumption exposure
are measured. The horizontal blue line represents the 5% nominal size of the tests. The number of
bootstrap replications is 10,000. The sample period is the one considered by LLM for the equity
portfolio case.
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Figure IA.5. Expected return-beta regressions with the consumption factor (LLM’s
bootstrap). The plots display the consumption risk premium estimate, λ̂H , and its 95% bootstrap
confidence interval for H = 1, . . . , 16. H indicates the horizon in quarters over which returns and
consumption exposure are measured. The number of bootstrap replications is 10,000. The sample
period is the one considered by LLM for the equity portfolio case.
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Figure IA.6. Expected return-beta regressions for nonequity asset classes (LLM’s boot-
strap). The plots display LLM’s capital share risk premium estimate, λ̂H , and its 95% bootstrap
confidence interval for H = 1, . . . , 16. H indicates the horizon in quarters over which returns and
capital share exposure are measured. The number of bootstrap replications is 10,000. The sample
period is the one considered by LLM. (See their Section I.)

18



0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Figure IA.7. Joint beta and rank tests for nonequity asset classes. The plots display the
p-values of the bootstrap joint beta (red circles) and rank (blue circles) tests of model identification
for H = 1, . . . , 16. H indicates the horizon in quarters over which returns and capital share exposure
are measured. The horizontal blue line represents the 5% nominal size of the tests. The number
of bootstrap replications is 10,000. The sample period is the one considered by LLM. (See their
Section I.)
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Figure IA.8. R2 profiles from actual and simulated data for nonequity asset classes.
The plots display the cross-sectional R2 from the actual data and from simulated sample paths of
a spurious factor for H = 1, . . . , 16. H indicates the horizon in quarters over which returns and
capital share exposure are measured. The number of simulated factor paths is 10,000. The test
returns are kept fixed at their observed values across the simulations. The sample period is the one
considered by LLM. (See their Section I.)
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Figure IA.9. Expected return-beta regressions for nonequity asset classes (nonpara-
metric bootstrap). The plots display LLM’s capital share risk premium estimate, λ̂H , and its
95% bootstrap confidence interval for H = 1, . . . , 16. H indicates the horizon in quarters over which
returns and capital share exposure are measured. The number of bootstrap replications is 10,000.
The sample period is the one considered by LLM. (See their Section I.)
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