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Asset pricing models are, at best, approximations of reality and are bound to be misspeci-

fied. However, it can still be useful to empirically evaluate the degree of model misspecifica-

tion and the relative performance of competing asset pricing models using actual data. In

their seminal paper, Hansen and Jagannathan (1997, HJ hereafter) propose two measures

of model misspecification, which are now routinely used for parameter estimation, specifi-

cation testing, and model selection. The first one measures the distance between the pro-

posed stochastic discount factor (SDF) and the set of admissible SDFs (i.e., the set of SDFs

that price a given set of test assets correctly). The second one measures the distance between

the proposed SDF and the set of nonnegative admissible SDFs. Since the first measure does

not impose the nonnegativity constraint (no-arbitrage condition) on the set of admissible

SDFs, whereas the second one does, we refer the first measure as the unconstrained HJ-

distance and the second one as the constrained HJ-distance.

The theoretical and large-sample statistical properties of the unconstrained and con-

strained HJ-distances in an unconditional setting have been explored in depth. Under cor-

rectly specified and linear SDFs, Jagannathan and Wang (1996) characterize the large-

sample behavior of the sample squared unconstrained HJ-distance.1 For general SDFs,

Hansen, Heaton, and Luttmer (1995) derive the limiting distribution of the sample uncon-

strained HJ-distance under model misspecification. Gospodinov, Kan, and Robotti (2016)

provide an in-depth analysis of the population constrained HJ-distance for the case of linear

SDFs under a multivariate elliptical assumption on the factors and the returns. In addition,

for general SDFs, they characterize the limiting behavior of the sample constrained HJ-

distance under correctly specified and misspecified models.2 They show the equivalence of

the asymptotic distributions of the sample constrained and unconstrained HJ-distance tests

and point out that the specification test developed for the sample unconstrained

1 Parker and Julliard (2005) extend the results in Jagannathan and Wang (1996) to the case of nonlin-

ear models.

2 See also Hansen, Heaton, and Luttmer (1995) and Li, Xu, and Zhang (2010).
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HJ-distance is also applicable to the sample constrained HJ-distance. In essence, under the

null of a correctly specified model, the constraints are not binding and the two tests are

asymptotically equivalent.3 Furthermore, the limiting behaviors of the SDF parameter esti-

mates and associated sample Lagrange multipliers in the unconstrained and constrained

HJ-distance settings have been derived (see, e.g., Hansen, Heaton, and Luttmer, 1995;

Hansen and Jagannathan, 1997; Kan and Robotti, 2008, 2009; Li, Xu, and Zhang, 2010;

Gospodinov, Kan, and Robotti, 2013, 2016.) Gospodinov, Kan, and Robotti (2014, 2019)

study the limiting distributions of the sample unconstrained HJ-distance and the associated

SDF parameter and Lagrange multiplier estimates in the presence of potential model mis-

specification and identification failure that is caused by the presence of spurious (“useless”)

factors in the analysis. Formal asymptotic tests of pairwise and multiple model comparison

based on the unconstrained and constrained HJ-distances have also been developed in the

literature. (See Kan and Robotti, 2009; Li, Xu, and Zhang, 2010; Gospodinov, Kan, and

Robotti, 2013.) Finally, the exact distributions of the sample HJ-distances under correctly

specified and misspecified models have been little explored. The only exceptions are Kan

and Zhou (2004) and Gospodinov, Kan, and Robotti (2016).

While, as emphasized above, much is known about performance evaluation and model

selection based on the unconditional HJ-distance measure, a rigorous treatment of the HJ-

distance metric in the presence of conditional moment restrictions is still in its infancy. This

is unfortunate since asset pricing theory typically implies a set of conditional moment

restrictions. For example, Dominguez and Lobato (2004) argue that, despite its computa-

tional attractiveness, the standard generalized method of moments (GMMs) approach of

Hansen (1982) based on unconditional moment restrictions may result in efficiency losses

and inconsistencies that arise from possible nonidentifiability of the parameters of interest

by the unconditional moment restrictions even when the conditional moment restrictions

identify the parameters. This article aims at shedding some light on these issues by analyz-

ing the population and sampling properties of the so-called conditional HJ-distance.

Let Rtþ1 be the gross returns on N test assets at the end of time t þ 1; and let I t be the

information available to the investors at time t. Absence of arbitrage is equivalent to the ex-

istence of a scalar stochastic process fmt;tþ1g such that the SDF mt;tþ1 between time t and

time tþ 1 is positive, is in the linear space of random variables with finite second moment

and measurable with respect to information I tþ1, and satisfies the set of conditional mo-

ment restrictions

E½mt;tþ1Rtþ1jI t� ¼ 1N ; (1)

where 1N is an N-vector of ones. When the admissible SDF, mt;tþ1, is replaced with a candi-

date SDF, ytþ1, which depends on a p-vector of unknown parameters h, we have two possi-

bilities. When the candidate SDF is correctly specified and well identified, Equation (1)

implies the set of N conditional moment restrictions

E½ytþ1ðh0ÞRtþ1 � 1NjI t� ¼ 0N ; (2)

where 0N is an N-vector of zeros and h0 is the (unique) unknown true value of the SDF par-

ameter vector. Consequently, we can think of ytþ1ðh0Þ as the true SDF. In contrast, when

3 A similar result holds for the limiting distributions of the parameter estimates under correctly speci-

fied models which coincide with those for the unconstrained HJ-distance.
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there does not exist a h such that Equation (2) holds, then the candidate SDF is misspeci-

fied. In this scenario, h0 will not be unique any longer and is referred to as the pseudo-true

value. This pseudo-true value of the parameter vector and the corresponding pseudo-true

SDF will not only depend on the particular choice of asset pricing model, but also on the

loss function whose first-order conditions are set to zero in optimization. The focus of the

authors is on a specific loss function, the unconstrained HJ-distance measure in a condition-

al setting.

Let eðI t; hÞ ¼ E½ytþ1ðhÞRtþ1 � 1NjI t� and XðI tÞ ¼ E½Rtþ1R0tþ1jI t�, then the state-

dependent conditional squared HJ-distance is given by

d2ðI tÞ ¼ min
h

eðI t; hÞ0X�1ðI tÞeðI t; hÞ: (3)

The resulting (state-dependent) pseudo-true value, ht; t ¼ 1; . . . ;T; could then be obtained

as the solution to the first-order conditions

E
@ytþ1ðhtÞ

@h
R0tþ1jI t

� �
X�1ðI tÞeðI t; htÞ ¼ 0p; (4)

where 0p is a p-vector of zeros, and the associated pseudo-true SDF is given by ytþ1ðhtÞ:
Note that the metric in Equation (3) is truly conditional, in the sense that the minimized

HJ-distance and associated pseudo-true values are state dependent. This is the definition of

conditional HJ-distance proposed by Balduzzi and Robotti (2010) and subsequently

employed by Fang, Ren, and Yuan (2011). A similar use of a state-dependent pseudo-true

value has also been promoted by Gagliardini, Gourieroux, and Renault (2011). This said,

this is not the measure the authors focus on in most of their population and econometric

analyses. Instead, as in Gagliardini and Ronchetti (2020), the authors consider an average

conditional squared HJ-distance of the form

d2 ¼ min
h

E½eðI t; hÞ0X�1ðI tÞeðI t; hÞ�: (5)

The pseudo-true values, h�; are then the solution to the first-order conditions

E E
@ytþ1ðh�Þ

@h
R0tþ1jI t

� �
X�1ðI tÞeðI t; h

�Þ
� �

¼ 0p; (6)

and the associated pseudo-true SDF is given by ytþ1ðh�Þ. This is also the framework adopted

in Gospodinov and Otsu (2012) and Proulx (2018). The average conditional HJ-distance in

Equation (6) involves an unconditional expectation of the argument. Therefore, the pro-

posed measure is constant. It is conditional only in the sense that the pricing errors are state

dependent. This raises some important questions. What is the economic interpretation of

this average conditional HJ-distance and of the corresponding pseudo-true SDF ytþ1ðh�Þ? In

a sense, we lose the nice economic interpretation of HJ-distance provided by Hansen and

Jagannathan (1997) in an unconditional setting. First, the resulting adjusted SDF ytþ1ðh�Þ �
kðh�; I tÞ0Rtþ1; where kðh�; I tÞ ¼ X�1ðI tÞeðI t; h

�Þ is the vector of time-varying Lagrange

multipliers will not be the correct SDF conditionally. Second, this adjusted SDF will also

not correctly price the assets unconditionally. In contrast, the adjusted SDF based on

ytþ1ðhtÞ will correctly price the assets conditionally and unconditionally. Furthermore, the

maximum pricing error interpretation of the HJ-distance in an unconditional setting will

break down when using ytþ1ðh�Þ as the pseudo-true SDF. Overall, when the model is
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misspecified, one can always choose some objective function to define the pseudo-true

parameters, but the original interpretation of HJ-distance may be compromised. It should

also be emphasized that ranking the performance of competing asset pricing models based

on d2 instead of d2ðI tÞ could be problematic. For example, the potentially interesting task

of determining how different models perform relative to each other over time would be

obfuscated by the use of the unconditional average operator. The authors are clearly aware

of these interpretation issues. However, it is not clear at this point how one can deal with a

truly conditional HJ-distance measure such as d2ðI tÞ: Certainly, the econometrics of d2ðI tÞ
would be challenging.

The computation of the sample average conditional HJ-distance requires the nonpara-

metric estimation of the conditional pricing error vector and the conditional second

moments matrix of the gross returns on the test assets. When the asset pricing model is glo-

bally misspecified, the asymptotic covariance matrix of the estimator ĥ of h� will need to

account for misspecification uncertainty in addition to sampling uncertainty.4 Since h�

depends on the choice of weighting matrix, the asymptotic covariance of ĥ will be sensitive

to the chosen weighting scheme. In addition, under model misspecification, the asymptotic

distribution of the underlying estimator will implicitly depend on the choice of states.

Therefore, one may not want to be overly parsimonious in the number of states to include

in the analysis. An immediate consequence of this is that when it comes to comparing alter-

native pricing models, their relative rankings may be sensitive to the state variables included

in the analysis.

This article proposes to estimate h� using the smooth minimum distance (SMD) ap-

proach of Lavergne and Patilea (2013). The SMD approach avoids the need of trimming

strategies that are typically required by classical local GMM estimators and, by allowing

for fixed bandwidth asymptotics, is less sensitive to the curse of dimensionality related to

the number of states.5 The authors show that the SMD approach can be seen as a condi-

tional extension of the jackknife GMM of Newey and Windmeijer (2009). This conditional

extension of the jackknife GMM with kernel smoothing allows the authors to revisit the

theory of GMM under misspecification (see Hall and Inoue, 2003) and to derive the asymp-

totic covariance matrix of ĥ under milder assumptions than in Hall and Inoue (2003). The

sieves minimum distance approach of Ai and Chen (2007) could also be employed to derive

the limiting distribution of ĥ.6 Similarly, Gagliardini and Ronchetti (2020, appendix C)

4 Gallant and White (1988) were the first to study GMM under globally misspecified models, but, as

Hall and Inoue (2003) note, they did not treat the important case of a stochastic weighting matrix.

However, Theorem 6.10 of White (1994) could be used to obtain asymptotic results under misspeci-

fied GMM with a stochastic weighting matrix.

5 In contrast, the optimal instruments (sieves-based) approach of Nagel and Singleton (2011), which

is based on Hansen (1985), is highly sensitive to this curse of dimensionality. The local GMM ap-

proach of Gagliardini and Ronchetti (2020) also prevents the number of states from being too large.

In addition, the consistency and asymptotic normality of their estimator critically hinge on the

bandwidth parameter converging to zero as T !1:
6 Although the results in Ai and Chen (2007) are based on an identity weighting matrix, their ap-

proach is robust in considering a stochastic weighting matrix such as the second moment matrix in

the HJ-distance problem.
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derive the limiting distribution of ĥ under correctly specified as well as misspecified models

using local GMM. The derivations for the correctly specified case are based on Gospodinov

and Otsu (2012), while the ones for the misspecified case extend the unconditional setting

of Hall and Inoue (2003) to a scenario in which the parameters are identified by a set of

conditional moment restrictions (see also Anatolyev and Gospodinov, 2011).

As for most nonparametric analyses, several choices need to be made to render the the-

ory operational. For example, the choice of kernel and bandwidths is likely to play an im-

portant role. This article actually considers two bandwidth parameters, one for the

conditional moment restrictions and the other for the weighting matrix. The authors pro-

vide us with some preliminary ideas of how the proposed estimator fares in small samples.

The results are encouraging and sometimes SMD seems to have better finite-sample proper-

ties than local GMM. However, more simulation experiments are needed to assess the reli-

ability of the asymptotic approximations proposed in this article and to claim that the SMD

approach works better than local GMM in small samples. In addition to the test asset

returns and factors, we also have instruments that may contribute to an increase in sam-

pling uncertainty relative, say, to the unconditional HJ-distance case. In particular, it would

be insightful to also explore the size and power properties of the t-test associated with the

SMD estimator under correctly specified and misspecified models.7

This article takes an important step toward understanding population and sampling

issues in conditional moment restriction models. From an economic perspective, it would

be desirable to shed further light on the role played by the pseudo-true SDF ytþ1ðh�Þ in pric-

ing, hedging, and forecasting problems. From a statistical perspective, more work needs to

be done to assess the large- and small-sample properties of alternative nonparametric esti-

mators in absolute and relative testing problems. For example, using a local GMM ap-

proach, Gagliardini and Ronchetti (2020) go beyond parameter estimates and associated

asymptotic standard errors. They actually provide us with the limiting distributions of the

sample average conditional HJ-distance under correctly specified and misspecified models.

Consistent with Gospodinov and Otsu (2012), they show that an appropriately recentered

sample (average) squared conditional HJ-distance is normally distributed even under the

null of correct model specification. This is in sharp contrast with the unconditional case

where it is well known that the sample unconstrained and constrained HJ-distances have

weighted chi-squared limiting distributions.8 Gagliardini and Ronchetti (2020) also provide

pairwise model comparison tests based on the (average) conditional squared HJ-distance

metric, effectively extending the results of Kan and Robotti (2009) and Gospodinov, Kan,

and Robotti (2013) to a conditional setting. Furthermore, it would be valuable to accom-

modate multiple model comparison in the analysis. Finally, an important task will be to

robustify the various tests statistics not only against global model misspecification but also

against potential identification weakness caused by the presence of spurious factors and/or

7 For linear and well-identified SDFs in an unconditional HJ-distance setting, Kan and Robotti (2009)

find that the misspecification robust t-test associated with the SDF parameter estimates is often

conservative.

8 A weighted Chi-squared limiting distribution under the null also emerges in the conditional HJ-

distance case that was studied by Fang, Ren, and Yuan (2011).
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instruments in the analysis. To this end, the work of Antoine and Lavergne (2014) is

promising.9
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